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Motivation

Out of all performance dimensions, ILP
and pipelining are those over which we
have very little control

The quality of a compiler determines the
quality of the binary code run on a
system

The programmer controls the compiler
through its many flags

Performance events are a powerful tool,
but at the same time difficult to use
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Our guestions

« Can we combine knowledge about
compiler flags and the response they
produce in hardware?

— Can we automatically characterize benchmarks?

— Which compiler flags are beneficial on which
code?

— Can we predict which ones to use depending on
the workload?

— |Is compile time a concern?
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Study setup

 Master-slave setup with 25 machines running
measurements in parallel, 29°000 test runs
e Hardware:
— 25 dual socket Westmere-EP servers
— 24 threads each @ 2.7GHz
— HT on
— 3.6 kernel

e Benchmarks
— HEP snippets
— ROOT benchmarks
— |/O intensive benchmarks from GOODA
— Adobe C++ benchmarks
— FFT
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Artificial benchmarks (Adobe)
GCC 4.6.3 vs. ICC 13.0.1

Benchmark Exec. time Exec. Exec. time Exec.
GCC-02 time GCC-03 time
ICC-02 ICC-03

functionobjects.cpp 245.05 238.60 240.97 240.58
loop_unroll.cpp 383.04 198.63 388.93 167.63

Simple_types_constant_folding.cpp 104.33 155.6 97.05 155.79
Simple_types_loop_invariant.cpp 354,92 245.38 333.19 245.13

Stepanov_abstraction.cpp 248.99 213.49 245.77 234.73
Stepanov_vector.cpp 301.38 214.303 303.06 228.004

Time measured in seconds
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ICC compile time
HEPSPECO0G6, various flags tested
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GCC-ICC potential sources of

differences

Inlining: at 02 in ICC, at O3 in GCC
IPO: at O2 in ICC
Vectorization: at O2 in ICC

Strict aliasing: At 02 in GCC, in ICC you
have to ask for it explicitly

Loop unrolling: O2 in ICC, but only some
loop optimizations available in GCC with
“frerun-loop-opt”

ICC uses optimized math library functions
by default
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Correlations of ICC flag usage

and performance

Not included were flags that:

— disregard strict standards compliance

— are enabled by default

— “tune for this architecture”

Split between CPU intensive and I/O intensive
benchmarks (27 and 10 benchmarks
respectively)

If we use flag A, is there speed increase?

— 1% threshold

What if we combine multiple flags?

What if we use the PMU to monitor
performance response?
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Gains (top) and regressions (bottom)

Compiler flag

Compiler flag

Counts

Counts

Compiler flag

Compiler flag

Counts

Counts

Opt-streaming-stores-always
Nolib-inline

03

Ipo
Opt-ra-region-strategy=block
fno-inline-functions
Opt-ra-region-strategy=routine
Ip

1071
1004
838
822
818
773
757
710

Ansi-alias
Opt-prefetch=4
Funroll-all-loops
Inline-forceinline
Unroll-aggressive
Opt-class-analysis
Opt-block-factor=16
Opt-block-factor=2
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PMU event counting

 Most quite stable with low run to run
variations

« Some (predictably) unstable:
— MEM UNCORE RETIRED.REMOTE DRAM

— MEM UNCORE RETIRED.REMOTE HITM

 Tip: control process and memory
pinning
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PMU event correlations (1)
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PMU event correlations (2)
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Bottleneck identification
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Compiler flag prediction - difficulties
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Summary and conclusions

Results of similar experiments were difficult to
reproduce

It is possible to semi-automatically characterize
benchmarks

It is possible to establish which compiler flags would be
likely to reduce a particular bottleneck

It is difficult to predict with good accuracy which
compiler flags will improve a particular workload

Remarks:

— There is potential in this approach, but more detailed information
about the program needs to be considered in a (possibly) multi-stage
approach

— Similar work (FDO with PMU events) is ongoing with relation to the
GOODA profiler (Baptiste Wicht) and elsewhere
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