A brief correlation study of x86
compiler flags and performance

events

2"d Apnual Concurrency Forum Meeting
February 5t 2013

Andrzej Nowak, CERN openlab

Based on the work of Mirela-Madalina Botezatu and .@.
Andrzej Nowak e

ooooooo

Overview

Motivation and open questions
Superficial comparisons of GCC and ICC
Compiler flag mixes

PMU event correlations

Bottleneck identification

Compiler flag prediction

S QU g L [0

A full technical report by Mirela Botezatu is
available on the openlab website

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler
flags and performance events

Motivation

Out of all performance dimensions, ILP
and pipelining are those over which we
have very little control

The quality of a compiler determines the
quality of the binary code run on a
system

The programmer controls the compiler
through its many flags

Performance events are a powerful tool,
but at the same time difficult to use

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler
flags and performance events

Our guestions

« Can we combine knowledge about
compiler flags and the response they
produce in hardware?

— Can we automatically characterize benchmarks?

— Which compiler flags are beneficial on which
code?

— Can we predict which ones to use depending on
the workload?

— |Is compile time a concern?

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler
flags and performance events

Study setup

 Master-slave setup with 25 machines running
measurements in parallel, 29°000 test runs
e Hardware:
— 25 dual socket Westmere-EP servers
— 24 threads each @ 2.7GHz
— HT on
— 3.6 kernel

e Benchmarks
— HEP snippets
— ROOT benchmarks
— |/O intensive benchmarks from GOODA
— Adobe C++ benchmarks
— FFT

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler
flags and performance events

Artificial benchmarks (Adobe)
GCC 4.6.3 vs. ICC 13.0.1

Benchmark Exec. time Exec. Exec. time Exec.
GCC-02 time GCC-03 time
ICC-02 ICC-03

functionobjects.cpp 245.05 238.60 240.97 240.58
loop_unroll.cpp 383.04 198.63 388.93 167.63

Simple_types_constant_folding.cpp 104.33 155.6 97.05 155.79
Simple_types_loop_invariant.cpp 354,92 245.38 333.19 245.13

Stepanov_abstraction.cpp 248.99 213.49 245.77 234.73
Stepanov_vector.cpp 301.38 214.303 303.06 228.004

Time measured in seconds

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler 6
flags and performance events

ICC compile time
HEPSPECO0G6, various flags tested

1000

w
=
(=
o
O
@
L
@©
E
I_

200 400 600 800

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler
flags and performance events

GCC-ICC potential sources of

differences

Inlining: at 02 in ICC, at O3 in GCC
IPO: at O2 in ICC
Vectorization: at O2 in ICC

Strict aliasing: At 02 in GCC, in ICC you
have to ask for it explicitly

Loop unrolling: O2 in ICC, but only some
loop optimizations available in GCC with
“frerun-loop-opt”

ICC uses optimized math library functions
by default

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler
flags and performance events

Correlations of ICC flag usage

and performance

Not included were flags that:

— disregard strict standards compliance

— are enabled by default

— “tune for this architecture”

Split between CPU intensive and I/O intensive
benchmarks (27 and 10 benchmarks
respectively)

If we use flag A, is there speed increase?

— 1% threshold

What if we combine multiple flags?

What if we use the PMU to monitor
performance response?

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler
flags and performance events

Gains (top) and regressions (bottom)

Compiler flag

Compiler flag

Counts

Counts

Compiler flag

Compiler flag

Counts

Counts

Opt-streaming-stores-always
Nolib-inline

03

Ipo
Opt-ra-region-strategy=block
fno-inline-functions
Opt-ra-region-strategy=routine
Ip

1071
1004
838
822
818
773
757
710

Ansi-alias
Opt-prefetch=4
Funroll-all-loops
Inline-forceinline
Unroll-aggressive
Opt-class-analysis
Opt-block-factor=16
Opt-block-factor=2

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler
flags and performance events

686
675
673
665
656
647
590
586

PMU event counting

 Most quite stable with low run to run
variations

« Some (predictably) unstable:
— MEM UNCORE RETIRED.REMOTE DRAM

— MEM UNCORE RETIRED.REMOTE HITM

 Tip: control process and memory
pinning

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler
flags and performance events

11

PMU event correlations (1)

50811 208412 50811 208412 000 28410 des10 0.08+00 158210 0e:00 3e+08 6408 0e:00 4es11 Besil 008400 15209
o
SR SRS SIS S TN T T Rt IR S T B I R IR RS S | TR S S N E
-
]
&
IMNHALTED_CORE_CYCLE! 0.58 057 073 039 LESY aar = 041 = am -
-
&
]
i
INSTRUCTION_RETIRED 0.95 0.81 0.40 e 0.80
-
o o
@ T
s
&
B
UOPS_RETIRECANY 0.83 o= azm 091
-
s
2
w
UOPS_ISSUEDANY 03 am . 0.70
-
g e
b o = = o -
;
oo @ oo § K]
o WRTHCYCLES DIV BUSY 0.84 - -
S e e 2 2
5
= 3
s
E © o] o of
b o o 5 ARITHON am e "
= o® o o oo g o7
S L frommwamdiae| = Sgo-af)
B
& = -
° o o &
. ® o BR_NST_EXECANY . T P w3z ©
o0 of g
oSy =
% .9%%0 3
< ©
T - S
=]
5 o
4 ° ° ISP_RETIREDALL_BRA 040 s am
o
2 ==
&
2
=
o
° ~
. J BACLEARCLEAR 0.86 0.90 057 0.61 5
©
o o o s
=] = yJ
I a o o
& L2_ROSTSIFETCH_HT 0.77 o 052
° o
=
S oo e &/ o
B P
= o o T T o T T S
o]
&
e o ao ® o o o a e o e o o L8 _MISSES g 0.56 0.60 L=
L 2
=
]
&
- s
-
]
= o EM_LOAD_RETIREDL1D H
9
= 08
2 -
B
= 4 G o T 5T T o T s @
9
il o
o o \ o - ° v, EM_LOAD_RETIRED12_H 0.82 F =
oo o o . o o oo - o oo o o F o
- & d Bade o Bo o oo dEnoo & Fg
3 o o o o o o o T =
i o © * & o @ 3 o ° B o o
AD_RETIREDLLC_UNSHA|
o o o o o o o
. o 3 o o o o o o B N g / o

D.08:00

f Y T
Oe+11 8.0e+11 5.0e+11 2.5e+12 0e+00 3e+11 6Ge+11 De+00 de+11 5.0e+07 15e+08 0.0e+00 1.5e+07 0e+00 3e+09 Be+09

PMU event correlations (2)

5.0e+11 2.0e+12 50e+11 2.0e+12
| I N N E— . | I (S N —

UNHALTED_CORE_CYCLE , 57 0.73

NSTRUCTION_RETIRED

UOPS_RETIREDANY

UOPS_ISSUEDANY

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler
flags and performance events

13

Bottleneck identification

CLES b BUSY N
(W
| 11&:-4 ISSUED. AN
| 3
|

| ¢ 7! TED_CORE CYCLES

|
MEM L-::lﬁ.Dl RETIRED.LID HIT == _ i
-------------- el S - W A DAL =

ALCHERS o

satS
IFETCH_HIT

malloc_test

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler

1
flags and performance events 4

Compiler flag prediction - difficulties

MEM UNCORE RETIRED.LOCAL HITM
MEM_LOAD RETIRED.OTHER_CORE I_'IEEE”- HITH

BR_MISP_RETIRED.ALL | E'F|.

X.opt.ra. rE-:u::nn Sirategy.
¥_infine. forceinfine
II'DF" RETIRED. ANY
MEK _LOAD F|E'I'IF|EEI LiDr HIT
»*__niolib. infine

niroll. all. loops
X.fno.inline. functions.
ES DIV BUSY
MEM LOAD RETIRED.CZ2 HIT

INSTRUCTION F|EI'IF|EE
BR_INST_EX

tores. s 'S
fign. 1.Jrr1 J0TIS

MEM UNCCORE RETIRED.CTH {
MEW_LOAD RETIRED.LLC UK RED HIT
prefefch.4

5. anahysis

0.00 .02 0.04 0.08 .08

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler
flags and performance events

Summary and conclusions

Results of similar experiments were difficult to
reproduce

It is possible to semi-automatically characterize
benchmarks

It is possible to establish which compiler flags would be
likely to reduce a particular bottleneck

It is difficult to predict with good accuracy which
compiler flags will improve a particular workload

Remarks:

— There is potential in this approach, but more detailed information
about the program needs to be considered in a (possibly) multi-stage
approach

— Similar work (FDO with PMU events) is ongoing with relation to the
GOODA profiler (Baptiste Wicht) and elsewhere

Mirela Botezatu, Andrzej Nowak - A brief correlation study of x86 compiler

1
flags and performance events 6

THANK YOU
Q&A

&

CERN

openlab

Questions? Andrzej.Nowak@cern.ch

	A brief correlation study of x86 compiler flags and performance events
	Overview
	Motivation
	Our questions
	Study setup
	Artificial benchmarks (Adobe)�GCC 4.6.3 vs. ICC 13.0.1
	ICC compile time�HEPSPEC06, various flags tested
	GCC-ICC potential sources of differences
	Correlations of ICC flag usage and performance
	Gains (top) and regressions (bottom)
	PMU event counting
	PMU event correlations (1)
	PMU event correlations (2)
	Bottleneck identification
	Compiler flag prediction - difficulties
	Summary and conclusions
	THANK YOU

